Peering Beyond the Gradient Veil with Distributed Auto Differentiation

18 Feb 2021  ·  Bradley T. Baker, Aashis Khanal, Vince D. Calhoun, Barak Pearlmutter, Sergey M. Plis ·

Although distributed machine learning has opened up many new and exciting research frontiers, fragmentation of models and data across different machines, nodes, and sites still results in considerable communication overhead, impeding reliable training in real-world contexts. The focus on gradients as the primary shared statistic during training has spawned a number of intuitive algorithms for distributed deep learning; however, gradient-centric training of large deep neural networks (DNNs) tends to be communication-heavy, often requiring additional adaptations such as sparsity constraints, compression, quantization, and more, to curtail bandwidth. We introduce an innovative, communication-friendly approach for training distributed DNNs, which capitalizes on the outer-product structure of the gradient as revealed by the mechanics of auto-differentiation. The exposed structure of the gradient evokes a new class of distributed learning algorithm, which is naturally more communication-efficient than full gradient sharing. Our approach, called distributed auto-differentiation (dAD), builds off a marriage of rank-based compression and the innate structure of the gradient as an outer-product. We demonstrate that dAD trains more efficiently than other state of the art distributed methods on modern architectures, such as transformers, when applied to large-scale text and imaging datasets. The future of distributed learning, we determine, need not be dominated by gradient-centric algorithms.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here