Efficient mixture model for clustering of sparse high dimensional binary data

11 Jul 2017  ·  Marek Śmieja, Krzysztof Hajto, Jacek Tabor ·

In this paper we propose a mixture model, SparseMix, for clustering of sparse high dimensional binary data, which connects model-based with centroid-based clustering. Every group is described by a representative and a probability distribution modeling dispersion from this representative... In contrast to classical mixture models based on EM algorithm, SparseMix: -is especially designed for the processing of sparse data, -can be efficiently realized by an on-line Hartigan optimization algorithm, -is able to automatically reduce unnecessary clusters. We perform extensive experimental studies on various types of data, which confirm that SparseMix builds partitions with higher compatibility with reference grouping than related methods. Moreover, constructed representatives often better reveal the internal structure of data. read more

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here