Efficient Multi-objective Neural Architecture Search via Lamarckian Evolution

Neural Architecture Search aims at automatically finding neural architectures that are competitive with architectures designed by human experts. While recent approaches have achieved state-of-the-art predictive performance for image recognition, they are problematic under resource constraints for two reasons: (1)the neural architectures found are solely optimized for high predictive performance, without penalizing excessive resource consumption, (2) most architecture search methods require vast computational resources... (read more)

PDF Abstract ICLR 2019 PDF ICLR 2019 Abstract
No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet