Efficient Peer Effects Estimators with Group Effects

10 May 2021  ·  Guido M. Kuersteiner, Ingmar R. Prucha, Ying Zeng ·

We study linear peer effects models where peers interact in groups, individual's outcomes are linear in the group mean outcome and characteristics, and group effects are random. Our specification is motivated by the moment conditions imposed in Graham 2008. We show that these moment conditions can be cast in terms of a linear random group effects model and lead to a class of GMM estimators that are generally identified as long as there is sufficient variation in group size. We also show that our class of GMM estimators contains a Quasi Maximum Likelihood estimator (QMLE) for the random group effects model, as well as the Wald estimator of Graham 2008 and the within estimator of Lee 2007 as special cases. Our identification results extend insights in Graham 2008 that show how assumptions about random group effects as well as variation in group size can be used to overcome the reflection problem in identifying peer effects. Our QMLE and GMM estimators accommodate additional covariates and are valid in situations with a large but finite number of different group sizes or types. Because our estimators are general moment based procedures, using instruments other than binary group indicators in estimation is straight forward. Our QMLE estimator accommodates group level covariates in the spirit of Mundlak and Chamberlain and offers an alternative to fixed effects specifications. Monte-Carlo simulations show that the bias of the QMLE estimator decreases with the number of groups and the variation in group size, and increases with group size. We also prove the consistency and asymptotic normality of the estimator under reasonable assumptions.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here