Efficient Policy Learning from Surrogate-Loss Classification Reductions

ICML 2020  ·  Andrew Bennett, Nathan Kallus ·

Recent work on policy learning from observational data has highlighted the importance of efficient policy evaluation and has proposed reductions to weighted (cost-sensitive) classification. But, efficient policy evaluation need not yield efficient estimation of policy parameters. We consider the estimation problem given by a weighted surrogate-loss classification reduction of policy learning with any score function, either direct, inverse-propensity weighted, or doubly robust. We show that, under a correct specification assumption, the weighted classification formulation need not be efficient for policy parameters. We draw a contrast to actual (possibly weighted) binary classification, where correct specification implies a parametric model, while for policy learning it only implies a semiparametric model. In light of this, we instead propose an estimation approach based on generalized method of moments, which is efficient for the policy parameters. We propose a particular method based on recent developments on solving moment problems using neural networks and demonstrate the efficiency and regret benefits of this method empirically.

PDF Abstract ICML 2020 PDF

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here