Efficient-UCBV: An Almost Optimal Algorithm using Variance Estimates

9 Nov 2017  ·  Subhojyoti Mukherjee, K. P. Naveen, Nandan Sudarsanam, Balaraman Ravindran ·

We propose a novel variant of the UCB algorithm (referred to as Efficient-UCB-Variance (EUCBV)) for minimizing cumulative regret in the stochastic multi-armed bandit (MAB) setting. EUCBV incorporates the arm elimination strategy proposed in UCB-Improved \citep{auer2010ucb}, while taking into account the variance estimates to compute the arms' confidence bounds, similar to UCBV \citep{audibert2009exploration}. Through a theoretical analysis we establish that EUCBV incurs a \emph{gap-dependent} regret bound of {\scriptsize $O\left( \dfrac{K\sigma^2_{\max} \log (T\Delta^2 /K)}{\Delta}\right)$} after $T$ trials, where $\Delta$ is the minimal gap between optimal and sub-optimal arms; the above bound is an improvement over that of existing state-of-the-art UCB algorithms (such as UCB1, UCB-Improved, UCBV, MOSS). Further, EUCBV incurs a \emph{gap-independent} regret bound of {\scriptsize $O\left(\sqrt{KT}\right)$} which is an improvement over that of UCB1, UCBV and UCB-Improved, while being comparable with that of MOSS and OCUCB. Through an extensive numerical study we show that EUCBV significantly outperforms the popular UCB variants (like MOSS, OCUCB, etc.) as well as Thompson sampling and Bayes-UCB algorithms.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here