Paper

Efficient-VDVAE: Less is more

Hierarchical VAEs have emerged in recent years as a reliable option for maximum likelihood estimation. However, instability issues and demanding computational requirements have hindered research progress in the area. We present simple modifications to the Very Deep VAE to make it converge up to $2.6\times$ faster, save up to $20\times$ in memory load and improve stability during training. Despite these changes, our models achieve comparable or better negative log-likelihood performance than current state-of-the-art models on all $7$ commonly used image datasets we evaluated on. We also make an argument against using 5-bit benchmarks as a way to measure hierarchical VAE's performance due to undesirable biases caused by the 5-bit quantization. Additionally, we empirically demonstrate that roughly $3\%$ of the hierarchical VAE's latent space dimensions is sufficient to encode most of the image information, without loss of performance, opening up the doors to efficiently leverage the hierarchical VAEs' latent space in downstream tasks. We release our source code and models at https://github.com/Rayhane-mamah/Efficient-VDVAE .

Results in Papers With Code
(↓ scroll down to see all results)