Eigen-Stratified Models

27 Jan 2020  ·  Jonathan Tuck, Stephen Boyd ·

Stratified models depend in an arbitrary way on a selected categorical feature that takes $K$ values, and depend linearly on the other $n$ features. Laplacian regularization with respect to a graph on the feature values can greatly improve the performance of a stratified model, especially in the low-data regime. A significant issue with Laplacian-regularized stratified models is that the model is $K$ times the size of the base model, which can be quite large. We address this issue by formulating eigen-stratifed models, which are stratified models with an additional constraint that the model parameters are linear combinations of some modest number $m$ of bottom eigenvectors of the graph Laplacian, i.e., those associated with the $m$ smallest eigenvalues. With eigen-stratified models, we only need to store the $m$ bottom eigenvectors and the corresponding coefficients as the stratified model parameters. This leads to a reduction, sometimes large, of model size when $m \leq n$ and $m \ll K$. In some cases, the additional regularization implicit in eigen-stratified models can improve out-of-sample performance over standard Laplacian regularized stratified models.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here