Electric Field Evaluation of Reconfigurable Intelligent Surface in Wireless Networks

Reconfigurable intelligent surface (RIS) used as infrastructure in wireless networks has been a trend, thanks to its low cost and high flexibility. Working in many ways including reflective mirrors and phase-shifted surfaces, RIS is able to enhance the coverage in communications and provide more degrees of freedom for sensing. However, the key issue lies in how to place RIS in accordance with the regulations for electromagnetic field (EMF) exposure, which requires refined evaluations. In this paper, we first investigate the regulations in terms of E-field. Then, relevant deployment characteristics are evaluated jointly: the minimum distance from the base station (BS) to the RIS, and the minimum height of the RIS are given for a given BS power limit and as function of the number of RIS elements. The ray-tracing simulations verify the correctness of our analysis. Besides, different frequency ranges (FRs) and radiation patterns of RIS elements are investigated. The results show that the EMF exposure risk is negligible when RIS works in the reflective-only (RO) mode. However, when it works in the beamforming (BO) mode, its placement should be well specified based on our analytical framework to comply with the regulations of E-field limit in general public scenarios. Finally, we provide an E-field measurement methodology and low-cost solutions in terms of general wireless networks and 5G standalone networks, which pave the way for real-world evaluation in future work.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods