ELSA: Partial Weight Freezing for Overhead-Free Sparse Network Deployment

11 Dec 2023  ·  Paniz Halvachi, Alexandra Peste, Dan Alistarh, Christoph H. Lampert ·

We present ELSA, a practical solution for creating deep networks that can easily be deployed at different levels of sparsity. The core idea is to embed one or more sparse networks within a single dense network as a proper subset of the weights. At prediction time, any sparse model can be extracted effortlessly simply be zeroing out weights according to a predefined mask. ELSA is simple, powerful and highly flexible. It can use essentially any existing technique for network sparsification and network training. In particular, it does not restrict the loss function, architecture or the optimization technique. Our experiments show that ELSA's advantages of flexible deployment comes with no or just a negligible reduction in prediction quality compared to the standard way of using multiple sparse networks that are trained and stored independently.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here