Embedded Silicon-Organic Integrated Neuromorphic System

18 Oct 2022  ·  Shengjie Zheng, Ling Liu, Junjie Yang, Jianwei Zhang, Tao Su, Bin Yue, Xiaojian Li ·

The development of artificial intelligence (AI) and robotics are both based on the tenet of "science and technology are people-oriented", and both need to achieve efficient communication with the human brain. Based on multi-disciplinary research in systems neuroscience, computer architecture, and functional organic materials, we proposed the concept of using AI to simulate the operating principles and materials of the brain in hardware to develop brain-inspired intelligence technology, and realized the preparation of neuromorphic computing devices and basic materials. We simulated neurons and neural networks in terms of material and morphology, using a variety of organic polymers as the base materials for neuroelectronic devices, for building neural interfaces as well as organic neural devices and silicon neural computational modules. We assemble organic artificial synapses with simulated neurons from silicon-based Field-Programmable Gate Array (FPGA) into organic artificial neurons, the basic components of neural networks, and later construct biological neural network models based on the interpreted neural circuits. Finally, we also discuss how to further build neuromorphic devices based on these organic artificial neurons, which have both a neural interface friendly to nervous tissue and interact with information from real biological neural networks.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods