Emergent Cooperation for Energy-efficient Connectivity via Wireless Power Transfer

23 Apr 2024  ·  Winston Hurst, Anurag Pallaprolu, Yasamin Mostofi ·

This paper addresses the challenge of incentivizing energy-constrained, non-cooperative user equipment (UE) to serve as cooperative relays. We consider a source UE with a non-line-of-sight channel to an access point (AP), where direct communication may be infeasible or may necessitate a substantial transmit power. Other UEs in the vicinity are viewed as relay candidates, and our aim is to enable energy-efficient connectivity for the source, while accounting for the self-interested behavior and private channel state information of these candidates, by allowing the source to "pay" the candidates via wireless power transfer (WPT). We propose a cooperation-inducing protocol, inspired by Myerson auction theory, which ensures that candidates truthfully report power requirements while minimizing the expected power used by the source. Through rigorous analysis, we establish the regularity of valuations for lognormal fading channels, which allows for the efficient determination of the optimal source transmit power. Extensive simulation experiments, employing real-world communication and WPT parameters, validate our theoretical framework. Our results demonstrate a 91% reduction in outage probability with as few as 4 relay candidates, compared to the non-cooperative scenario, and as much as 48% source power savings compared to a baseline approach, highlighting the efficacy of our proposed methodology.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here