EnCoD: Distinguishing Compressed and Encrypted File Fragments

15 Oct 2020  ·  Fabio De Gaspari, Dorjan Hitaj, Giulio Pagnotta, Lorenzo De Carli, Luigi V. Mancini ·

Reliable identification of encrypted file fragments is a requirement for several security applications, including ransomware detection, digital forensics, and traffic analysis. A popular approach consists of estimating high entropy as a proxy for randomness. However, many modern content types (e.g. office documents, media files, etc.) are highly compressed for storage and transmission efficiency. Compression algorithms also output high-entropy data, thus reducing the accuracy of entropy-based encryption detectors. Over the years, a variety of approaches have been proposed to distinguish encrypted file fragments from high-entropy compressed fragments. However, these approaches are typically only evaluated over a few, select data types and fragment sizes, which makes a fair assessment of their practical applicability impossible. This paper aims to close this gap by comparing existing statistical tests on a large, standardized dataset. Our results show that current approaches cannot reliably tell apart encryption and compression, even for large fragment sizes. To address this issue, we design EnCoD, a learning-based classifier which can reliably distinguish compressed and encrypted data, starting with fragments as small as 512 bytes. We evaluate EnCoD against current approaches over a large dataset of different data types, showing that it outperforms current state-of-the-art for most considered fragment sizes and data types.

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here