End-to-End Deep Residual Learning with Dilated Convolutions for Myocardial Infarction Detection and Localization

15 Sep 2019  ·  Iván López-Espejo ·

In this report, I investigate the use of end-to-end deep residual learning with dilated convolutions for myocardial infarction (MI) detection and localization from electrocardiogram (ECG) signals. Although deep residual learning has already been applied to MI detection and localization, I propose a more accurate system that distinguishes among a higher number (i.e., six) of MI locations. Inspired by speech waveform processing with neural networks, I found a more robust front-end than directly arranging the multi-lead ECG signal into an input matrix consisting of the use of a single one-dimensional convolutional layer per ECG lead to extract a pseudo-time-frequency representation and create a compact and discriminative input feature volume. As a result, I end up with a system achieving an MI detection and localization accuracy of 99.99% on the well-known Physikalisch-Technische Bundesanstalt (PTB) database.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here