End-to-End Optimization of JPEG-Based Deep Learning Process for Image Classification

10 Aug 2023  ·  Siyu Qi, Lahiru D. Chamain, Zhi Ding ·

Among major deep learning (DL) applications, distributed learning involving image classification require effective image compression codecs deployed on low-cost sensing devices for efficient transmission and storage. Traditional codecs such as JPEG designed for perceptual quality are not configured for DL tasks. This work introduces an integrative end-to-end trainable model for image compression and classification consisting of a JPEG image codec and a DL-based classifier. We demonstrate how this model can optimize the widely deployed JPEG codec settings to improve classification accuracy in consideration of bandwidth constraint. Our tests on CIFAR-100 and ImageNet also demonstrate improved validation accuracy over preset JPEG configuration.

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here