End-to-end optimization of nonlinear transform codes for perceptual quality

18 Jul 2016  ·  Johannes Ballé, Valero Laparra, Eero P. Simoncelli ·

We introduce a general framework for end-to-end optimization of the rate--distortion performance of nonlinear transform codes assuming scalar quantization. The framework can be used to optimize any differentiable pair of analysis and synthesis transforms in combination with any differentiable perceptual metric. As an example, we consider a code built from a linear transform followed by a form of multi-dimensional local gain control. Distortion is measured with a state-of-the-art perceptual metric. When optimized over a large database of images, this representation offers substantial improvements in bitrate and perceptual appearance over fixed (DCT) codes, and over linear transform codes optimized for mean squared error.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here