Energy-efficient Decentralized Learning via Graph Sparsification

5 Jan 2024  ·  Xusheng Zhang, Cho-Chun Chiu, Ting He ·

This work aims at improving the energy efficiency of decentralized learning by optimizing the mixing matrix, which controls the communication demands during the learning process. Through rigorous analysis based on a state-of-the-art decentralized learning algorithm, the problem is formulated as a bi-level optimization, with the lower level solved by graph sparsification. A solution with guaranteed performance is proposed for the special case of fully-connected base topology and a greedy heuristic is proposed for the general case. Simulations based on real topology and dataset show that the proposed solution can lower the energy consumption at the busiest node by 54%-76% while maintaining the quality of the trained model.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods