Energy--Information Trade-off Induces Continuous and Discontinuous Phase Transitions in Lateral Predictive Coding

22 Feb 2023  ·  Zhen-Ye Huang, Ruyi Zhou, Miao Huang, Hai-Jun Zhou ·

Lateral predictive coding is a recurrent neural network which creates energy-efficient internal representations by exploiting statistical regularity in sensory inputs. Here we investigate the trade-off between information robustness and energy in a linear model of lateral predictive coding analytically and by numerical minimization of a free energy. We observe several phase transitions in the synaptic weight matrix, especially a continuous transition which breaks reciprocity and permutation symmetry and builds cyclic dominance and a discontinuous transition with the associated sudden emergence of tight balance between excitatory and inhibitory interactions. The optimal network follows an ideal-gas law in an extended temperature range and saturates the efficiency upper-bound of energy utilization. These results bring theoretical insights on the emergence and evolution of complex internal models in predictive processing systems.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here