Enhancing Automatically Discovered Multi-level Acoustic Patterns Considering Context Consistency With Applications in Spoken Term Detection

7 Sep 2015  ·  Cheng-Tao Chung, Wei-Ning Hsu, Cheng-Yi Lee, Lin-shan Lee ·

This paper presents a novel approach for enhancing the multiple sets of acoustic patterns automatically discovered from a given corpus. In a previous work it was proposed that different HMM configurations (number of states per model, number of distinct models) for the acoustic patterns form a two-dimensional space. Multiple sets of acoustic patterns automatically discovered with the HMM configurations properly located on different points over this two-dimensional space were shown to be complementary to one another, jointly capturing the characteristics of the given corpus. By representing the given corpus as sequences of acoustic patterns on different HMM sets, the pattern indices in these sequences can be relabeled considering the context consistency across the different sequences. Good improvements were observed in preliminary experiments of pattern spoken term detection (STD) performed on both TIMIT and Mandarin Broadcast News with such enhanced patterns.

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here