Ensemble Kalman Variational Objectives: Nonlinear Latent Trajectory Inference with A Hybrid of Variational Inference and Ensemble Kalman Filter

17 Oct 2020  ·  Tsuyoshi Ishizone, Tomoyuki Higuchi, Kazuyuki Nakamura ·

Variational inference (VI) combined with Bayesian nonlinear filtering produces state-of-the-art results for latent time-series modeling. A body of recent work has focused on sequential Monte Carlo (SMC) and its variants, e.g., forward filtering backward simulation (FFBSi). Although these studies have succeeded, serious problems remain in particle degeneracy and biased gradient estimators. In this paper, we propose Ensemble Kalman Variational Objective (EnKO), a hybrid method of VI and the ensemble Kalman filter (EnKF), to infer state space models (SSMs). Our proposed method can efficiently identify latent dynamics because of its particle diversity and unbiased gradient estimators. We demonstrate that our EnKO outperforms SMC-based methods in terms of predictive ability and particle efficiency for three benchmark nonlinear system identification tasks.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here