Ensemble learning in CNN augmented with fully connected subnetworks

19 Mar 2020 Daiki Hirata Norikazu Takahashi

Convolutional Neural Networks (CNNs) have shown remarkable performance in general object recognition tasks. In this paper, we propose a new model called EnsNet which is composed of one base CNN and multiple Fully Connected SubNetworks (FCSNs)... (read more)

PDF Abstract
No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet