Entropic Graph Regularization in Non-Parametric Semi-Supervised Classification

NeurIPS 2009  ·  Amarnag Subramanya, Jeff A. Bilmes ·

We prove certain theoretical properties of a graph-regularized transductive learning objective that is based on minimizing a Kullback-Leibler divergence based loss. These include showing that the iterative alternating minimization procedure used to minimize the objective converges to the correct solution and deriving a test for convergence... We also propose a graph node ordering algorithm that is cache cognizant and leads to a linear speedup in parallel computations. This ensures that the algorithm scales to large data sets. By making use of empirical evaluation on the TIMIT and Switchboard I corpora, we show this approach is able to out-perform other state-of-the-art SSL approaches. In one instance, we solve a problem on a 120 million node graph. read more

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here