Entropy Estimations Using Correlated Symmetric Stable Random Projections

NeurIPS 2012  ·  Ping Li, Cun-Hui Zhang ·

Methods for efficiently estimating the Shannon entropy of data streams have important applications in learning, data mining, and network anomaly detections (e.g., the DDoS attacks). For nonnegative data streams, the method of Compressed Counting (CC) based on maximally-skewed stable random projections can provide accurate estimates of the Shannon entropy using small storage. However, CC is no longer applicable when entries of data streams can be below zero, which is a common scenario when comparing two streams. In this paper, we propose an algorithm for entropy estimation in general data streams which allow negative entries. In our method, the Shannon entropy is approximated by the finite difference of two correlated frequency moments estimated from correlated samples of symmetric stable random variables. Our experiments confirm that this method is able to substantially better approximate the Shannon entropy compared to the prior state-of-the-art.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here