Environment Agnostic Representation for Visual Reinforcement Learning

Generalization capability of vision-based deep reinforcement learning (RL) is indispensable to deal with dynamic environment changes that exist in visual observations. The high-dimensional space of the visual input, however, imposes challenges in adapting an agent to unseen environments. In this work, we propose Environment Agnostic Reinforcement learning (EAR), which is a compact framework for domain generalization of the visual deep RL. Environment-agnostic features (EAFs) are extracted by leveraging three novel objectives based on feature factorization, reconstruction, and episode-aware state shifting, so that policy learning is accomplished only with vital features. EAR is a simple single-stage method with a low model complexity and a fast inference time, ensuring a high reproducibility, while attaining state-of-the-art performance in the DeepMind Control Suite and DrawerWorld benchmarks.

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here