Ergodic Secrecy Rate Analysis for LEO Satellite Downlink Networks

12 Dec 2023  ·  Daeun Kim, Namyoon Lee ·

Satellite networks are recognized as an effective solution to ensure seamless connectivity worldwide, catering to a diverse range of applications. However, the broad coverage and broadcasting nature of satellite networks also expose them to security challenges. Despite these challenges, there is a lack of analytical understanding addressing the secrecy performance of these networks. This paper presents a secrecy rate analysis for downlink low Earth orbit (LEO) satellite networks by modeling the spatial distribution of satellites, users, and potential eavesdroppers as homogeneous Poisson point processes on concentric spheres. Specifically, we provide an analytical expression for the ergodic secrecy rate of a typical downlink user in terms of the satellite network parameters, fading parameters, and path-loss exponent. Simulation results show the exactness of the provided expressions and we find that optimal satellite altitude increases with eavesdropper density.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here