Estimating activity cycles with probabilistic methods II. The Mount Wilson Ca H&K data

21 Dec 2017  ·  N. Olspert, J. Lehtinen, M. J. Käpylä, J. Pelt, A. Grigorievskiy ·

Debate over the existence of branches in the stellar activity-rotation diagrams continues. Application of modern time series analysis tools to study the mean cycle periods in chromospheric activity index is lacking... We develop such models, based on Gaussian processes, for one-dimensional time series and apply it to the extended Mount Wilson Ca H&K sample. Our main aim is to study how the previously commonly used assumption of strict harmonicity of the stellar cycles as well as handling of the linear trends affects the results. We introduce three methods of different complexity, starting with the simple Bayesian harmonic model and followed by Gaussian Process models with periodic and quasi-periodic covariance functions. We confirm the existence of two populations in the activity-period diagram. We find only one significant trend in the inactive population, namely that the cycle periods get shorter with increasing rotation. This is in contrast with earlier studies, that postulate the existence of trends in both of the populations. In terms of rotation to cycle period ratio, our data is consistent with only two activity branches such that the active branch merges together with the transitional one. The retrieved stellar cycles are uniformly distributed over the R'HK activity index, indicating that the operation of stellar large-scale dynamos carries smoothly over the Vaughan-Preston gap. At around the solar activity index, however, indications of a disruption in the cyclic dynamo action are seen. Our study shows that stellar cycle estimates depend significantly on the model applied. Such model-dependent aspects include the improper treatment of linear trends, while the assumption of strict harmonicity can result in the appearance of double cyclicities that seem more likely to be explained by the quasi-periodicity of the cycles. read more

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.