Estimating Basis Functions in Massive Fields under the Spatial Mixed Effects Model

12 Mar 2020Karl T. PazdernikRanjan Maitra

Spatial prediction is commonly achieved under the assumption of a Gaussian random field (GRF) by obtaining maximum likelihood estimates of parameters, and then using the kriging equations to arrive at predicted values. For massive datasets, fixed rank kriging using the Expectation-Maximization (EM) algorithm for estimation has been proposed as an alternative to the usual but computationally prohibitive kriging method... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet