Estimating Mass Distribution of Articulated Objects using Non-prehensile Manipulation

9 Jul 2019  ·  K. Niranjan Kumar, Irfan Essa, Sehoon Ha, C. Karen Liu ·

We explore the problem of estimating the mass distribution of an articulated object by an interactive robotic agent. Our method predicts the mass distribution of an object by using the limited sensing and actuating capabilities of a robotic agent that is interacting with the object. We are inspired by the role of exploratory play in human infants. We take the combined approach of supervised and reinforcement learning to train an agent that learns to strategically interact with the object to estimate the object's mass distribution. Our method consists of two neural networks: (i) the policy network which decides how to interact with the object, and (ii) the predictor network that estimates the mass distribution given a history of observations and interactions. Using our method, we train a robotic arm to estimate the mass distribution of an object with moving parts (e.g. an articulated rigid body system) by pushing it on a surface with unknown friction properties. We also demonstrate how our training from simulations can be transferred to real hardware using a small amount of real-world data for fine-tuning. We use a UR10 robot to interact with 3D printed articulated chains with varying mass distributions and show that our method significantly outperforms the baseline system that uses random pushes to interact with the object.

PDF Abstract
No code implementations yet. Submit your code now


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here