Estimating the Mixing Coefficients of Geometrically Ergodic Markov Processes

11 Feb 2024  ·  Steffen Grünewälder, Azadeh Khaleghi ·

We propose methods to estimate the individual $\beta$-mixing coefficients of a real-valued geometrically ergodic Markov process from a single sample-path $X_0,X_1, \dots,X_n$. Under standard smoothness conditions on the densities, namely, that the joint density of the pair $(X_0,X_m)$ for each $m$ lies in a Besov space $B^s_{1,\infty}(\mathbb R^2)$ for some known $s>0$, we obtain a rate of convergence of order $\mathcal{O}(\log(n) n^{-[s]/(2[s]+2)})$ for the expected error of our estimator in this case\footnote{We use $[s]$ to denote the integer part of the decomposition $s=[s]+\{s\}$ of $s \in (0,\infty)$ into an integer term and a {\em strictly positive} remainder term $\{s\} \in (0,1]$.}. We complement this result with a high-probability bound on the estimation error, and further obtain analogues of these bounds in the case where the state-space is finite. Naturally no density assumptions are required in this setting; the expected error rate is shown to be of order $\mathcal O(\log(n) n^{-1/2})$.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here