Evaluating Neural Word Representations in Tensor-Based Compositional Settings

We provide a comparative study between neural word representations and traditional vector spaces based on co-occurrence counts, in a number of compositional tasks. We use three different semantic spaces and implement seven tensor-based compositional models, which we then test (together with simpler additive and multiplicative approaches) in tasks involving verb disambiguation and sentence similarity... (read more)

PDF Abstract EMNLP 2014 PDF EMNLP 2014 Abstract
No code implementations yet. Submit your code now

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet