Evaluating Text GANs as Language Models

NAACL 2019 Guy TevetGavriel HabibVered ShwartzJonathan Berant

Generative Adversarial Networks (GANs) are a promising approach for text generation that, unlike traditional language models (LM), does not suffer from the problem of ``exposure bias''. However, A major hurdle for understanding the potential of GANs for text generation is the lack of a clear evaluation metric... (read more)

PDF Abstract


No code implementations yet. Submit your code now

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet