Evaluation of concept drift adaptation for acoustic scene classifier based on Kernel Density Drift Detection and Combine Merge Gaussian Mixture Model

27 May 2021  ·  Ibnu Daqiqil Id, Masanobu Abe, Sunao Hara ·

Based on the experimental results, all concepts drift types have their respective hyperparameter configurations. Simple and gradual concept drift have similar pattern which requires a smaller {\alpha} value than recurring concept drift because, in this type of drift, a new concept appear continuously, so it needs a high-frequency model adaptation. However, in recurring concepts, the new concept may repeat in the future, so the lower frequency adaptation is better. Furthermore, high-frequency model adaptation could lead to an overfitting problem. Implementing CMGMM component pruning mechanism help to control the number of the active component and improve model performance.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here