Evaluation of machine learning algorithms for Health and Wellness applications: a tutorial

31 Aug 2020  ·  Jussi Tohka, Mark van Gils ·

Research on decision support applications in healthcare, such as those related to diagnosis, prediction, treatment planning, etc., have seen enormously increased interest recently. This development is thanks to the increase in data availability as well as advances in artificial intelligence and machine learning research. Highly promising research examples are published daily. However, at the same time, there are some unrealistic expectations with regards to the requirements for reliable development and objective validation that is needed in healthcare settings. These expectations may lead to unmet schedules and disappointments (or non-uptake) at the end-user side. It is the aim of this tutorial to provide practical guidance on how to assess performance reliably and efficiently and avoid common traps. Instead of giving a list of do's and don't s, this tutorial tries to build a better understanding behind these do's and don't s and presents both the most relevant performance evaluation criteria as well as how to compute them. Along the way, we will indicate common mistakes and provide references discussing various topics more in-depth.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here