Evaluation of Video-Based rPPG in Challenging Environments: Artifact Mitigation and Network Resilience

Video-based remote photoplethysmography (rPPG) has emerged as a promising technology for non-contact vital sign monitoring, especially under controlled conditions. However, the accurate measurement of vital signs in real-world scenarios faces several challenges, including artifacts induced by videocodecs, low-light noise, degradation, low dynamic range, occlusions, and hardware and network constraints. In this article, we systematically investigate comprehensive investigate these issues, measuring their detrimental effects on the quality of rPPG measurements. Additionally, we propose practical strategies for mitigating these challenges to improve the dependability and resilience of video-based rPPG systems. We detail methods for effective biosignal recovery in the presence of network limitations and present denoising and inpainting techniques aimed at preserving video frame integrity. Through extensive evaluations and direct comparisons, we demonstrate the effectiveness of the approaches in enhancing rPPG measurements under challenging environments, contributing to the development of more reliable and effective remote vital sign monitoring technologies.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods