Event and Entity Coreference using Trees to Encode Uncertainty in Joint Decisions

Coreference decisions among event mentions and among co-occurring entity mentions are highly interdependent, thus motivating joint inference. Capturing the uncertainty over each variable can be crucial for inference among multiple dependent variables. Previous work on joint coreference employs heuristic approaches, lacking well-defined objectives, and lacking modeling of uncertainty on each side of the joint problem. We present a new approach of joint coreference, including (1) a formal cost function inspired by Dasgupta’s cost for hierarchical clustering, and (2) a representation for uncertainty of clustering of event and entity mentions, again based on a hierarchical structure. We describe an alternating optimization method for inference that when clustering event mentions, considers the uncertainty of the clustering of entity mentions and vice-versa. We show that our proposed joint model provides empirical advantages over state-of-the-art independent and joint models.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here