Event Causality Identification via Generation of Important Context Words

*SEM (NAACL) 2022  ·  Hieu Man, Minh Nguyen, Thien Nguyen ·

An important problem of Information Extraction involves Event Causality Identification (ECI) that seeks to identify causal relation between pairs of event mentions. Prior models for ECI have mainly solved the problem using the classification framework that does not explore prediction/generation of important context words from input sentences for causal recognition. In this work, we consider the words along the dependency path between the two event mentions in the dependency tree as the important context words for ECI. We introduce dependency path generation as a complementary task for ECI, which can be solved jointly with causal label prediction to improve the performance. To facilitate the multi-task learning, we cast ECI into a generation problem that aims to generate both causal relation and dependency path words from input sentence. In addition, we propose to use the REINFORCE algorithm to train our generative model where novel reward functions are designed to capture both causal prediction accuracy and generation quality. The experiments on two benchmark datasets demonstrate state-of-the-art performance of the proposed model for ECI.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here