Event-Driven LSTM For Forex Price Prediction

29 Jan 2021  ·  Ling Qi, Matloob Khushi, Josiah Poon ·

The majority of studies in the field of AI guided financial trading focus on purely applying machine learning algorithms to continuous historical price and technical analysis data. However, due to non-stationary and high volatile nature of Forex market most algorithms fail when put into real practice... We developed novel event-driven features which indicate a change of trend in direction. We then build long deep learning models to predict a retracement point providing a perfect entry point to gain maximum profit. We use a simple recurrent neural network (RNN) as our baseline model and compared with short-term memory (LSTM), bidirectional long short-term memory (BiLSTM) and gated recurrent unit (GRU). Our experiment results show that the proposed event-driven feature selection together with the proposed models can form a robust prediction system which supports accurate trading strategies with minimal risk. Our best model on 15-minutes interval data for the EUR/GBP currency achieved RME 0.006x10^(-3) , RMSE 2.407x10^(-3), MAE 1.708x10^(-3), MAPE 0.194% outperforming previous studies. read more

PDF Abstract
No code implementations yet. Submit your code now


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here