Event-Driven Tactile Learning with Location Spiking Neurons

23 Jul 2022  ·  Peng Kang, Srutarshi Banerjee, Henry Chopp, Aggelos Katsaggelos, Oliver Cossairt ·

The sense of touch is essential for a variety of daily tasks. New advances in event-based tactile sensors and Spiking Neural Networks (SNNs) spur the research in event-driven tactile learning. However, SNN-enabled event-driven tactile learning is still in its infancy due to the limited representative abilities of existing spiking neurons and high spatio-temporal complexity in the data. In this paper, to improve the representative capabilities of existing spiking neurons, we propose a novel neuron model called "location spiking neuron", which enables us to extract features of event-based data in a novel way. Moreover, based on the classical Time Spike Response Model (TSRM), we develop a specific location spiking neuron model - Location Spike Response Model (LSRM) that serves as a new building block of SNNs. Furthermore, we propose a hybrid model which combines an SNN with TSRM neurons and an SNN with LSRM neurons to capture the complex spatio-temporal dependencies in the data. Extensive experiments demonstrate the significant improvements of our models over other works on event-driven tactile learning and show the superior energy efficiency of our models and location spiking neurons, which may unlock their potential on neuromorphic hardware.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods