Event-triggered and distributed model predictive control for guaranteed collision avoidance in UAV swarms

22 Jun 2022  ·  Alexander Gräfe, Joram Eickhoff, Sebastian Trimpe ·

Distributed model predictive control (DMPC) is often used to tackle path planning for unmanned aerial vehicle (UAV) swarms. However, it requires considerable computations on-board the UAV, leading to increased weight and power consumption. In this work, we propose to offload path planning computations to multiple ground-based computation units. As simultaneously communicating and recomputing all trajectories is not feasible for a large swarm with tight timing requirements, we develop a novel event-triggered DMPC that selects a subset of most relevant UAV trajectories to be replanned. The resulting architecture reduces UAV weight and power consumption, while the active redundancy provides robustness against computation unit failures. Moreover, the DMPC guarantees feasible and collision-free trajectories for UAVs with linear dynamics. In simulations, we demonstrate that our method can reliably plan trajectories, while saving 60% of network traffic and required computational power. Hardware-in-the-loop experiments show that it is suitable to control real quadcopter swarms.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here