Evolution of Neural Tangent Kernels under Benign and Adversarial Training

21 Oct 2022  ·  Noel Loo, Ramin Hasani, Alexander Amini, Daniela Rus ·

Two key challenges facing modern deep learning are mitigating deep networks' vulnerability to adversarial attacks and understanding deep learning's generalization capabilities. Towards the first issue, many defense strategies have been developed, with the most common being Adversarial Training (AT). Towards the second challenge, one of the dominant theories that has emerged is the Neural Tangent Kernel (NTK) -- a characterization of neural network behavior in the infinite-width limit. In this limit, the kernel is frozen, and the underlying feature map is fixed. In finite widths, however, there is evidence that feature learning happens at the earlier stages of the training (kernel learning) before a second phase where the kernel remains fixed (lazy training). While prior work has aimed at studying adversarial vulnerability through the lens of the frozen infinite-width NTK, there is no work that studies the adversarial robustness of the empirical/finite NTK during training. In this work, we perform an empirical study of the evolution of the empirical NTK under standard and adversarial training, aiming to disambiguate the effect of adversarial training on kernel learning and lazy training. We find under adversarial training, the empirical NTK rapidly converges to a different kernel (and feature map) than standard training. This new kernel provides adversarial robustness, even when non-robust training is performed on top of it. Furthermore, we find that adversarial training on top of a fixed kernel can yield a classifier with $76.1\%$ robust accuracy under PGD attacks with $\varepsilon = 4/255$ on CIFAR-10.

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods