Ex-Model: Continual Learning from a Stream of Trained Models

13 Dec 2021  ·  Antonio Carta, Andrea Cossu, Vincenzo Lomonaco, Davide Bacciu ·

Learning continually from non-stationary data streams is a challenging research topic of growing popularity in the last few years. Being able to learn, adapt, and generalize continually in an efficient, effective, and scalable way is fundamental for a sustainable development of Artificial Intelligent systems. However, an agent-centric view of continual learning requires learning directly from raw data, which limits the interaction between independent agents, the efficiency, and the privacy of current approaches. Instead, we argue that continual learning systems should exploit the availability of compressed information in the form of trained models. In this paper, we introduce and formalize a new paradigm named "Ex-Model Continual Learning" (ExML), where an agent learns from a sequence of previously trained models instead of raw data. We further contribute with three ex-model continual learning algorithms and an empirical setting comprising three datasets (MNIST, CIFAR-10 and CORe50), and eight scenarios, where the proposed algorithms are extensively tested. Finally, we highlight the peculiarities of the ex-model paradigm and we point out interesting future research directions.

PDF Abstract

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here