Exact Langevin Dynamics with Stochastic Gradients

Stochastic gradient Markov Chain Monte Carlo algorithms are popular samplers for approximate inference, but they are generally biased. We show that many recent versions of these methods (e.g. Chen et al. (2014)) cannot be corrected using Metropolis-Hastings rejection sampling, because their acceptance probability is always zero. We can fix this by employing a sampler with realizable backwards trajectories, such as Gradient-Guided Monte Carlo (Horowitz, 1991), which generalizes stochastic gradient Langevin dynamics (Welling and Teh, 2011) and Hamiltonian Monte Carlo. We show that this sampler can be used with stochastic gradients, yielding nonzero acceptance probabilities, which can be computed even across multiple steps.

PDF Abstract pproximateinference AABI 2021 PDF pproximateinference AABI 2021 Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here