ExCeL : Combined Extreme and Collective Logit Information for Enhancing Out-of-Distribution Detection

23 Nov 2023  ·  Naveen Karunanayake, Suranga Seneviratne, Sanjay Chawla ·

Deep learning models often exhibit overconfidence in predicting out-of-distribution (OOD) data, underscoring the crucial role of OOD detection in ensuring reliability in predictions. Among various OOD detection approaches, post-hoc detectors have gained significant popularity, primarily due to their ease of use and implementation. However, the effectiveness of most post-hoc OOD detectors has been constrained as they rely solely either on extreme information, such as the maximum logit, or on the collective information (i.e., information spanned across classes or training samples) embedded within the output layer. In this paper, we propose ExCeL that combines both extreme and collective information within the output layer for enhanced accuracy in OOD detection. We leverage the logit of the top predicted class as the extreme information (i.e., the maximum logit), while the collective information is derived in a novel approach that involves assessing the likelihood of other classes appearing in subsequent ranks across various training samples. Our idea is motivated by the observation that, for in-distribution (ID) data, the ranking of classes beyond the predicted class is more deterministic compared to that in OOD data. Experiments conducted on CIFAR100 and ImageNet-200 datasets demonstrate that ExCeL consistently is among the five top-performing methods out of twenty-one existing post-hoc baselines when the joint performance on near-OOD and far-OOD is considered (i.e., in terms of AUROC and FPR95). Furthermore, ExCeL shows the best overall performance across both datasets, unlike other baselines that work best on one dataset but has a performance drop in the other.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here