Excited state, non-adiabatic dynamics of large photoswitchable molecules using a chemically transferable machine learning potential

10 Aug 2021  ·  Simon Axelrod, Eugene Shakhnovich, Rafael Gómez-Bombarelli ·

Light-induced chemical processes are ubiquitous in nature and have widespread technological applications. For example, photoisomerization can allow a drug with a photo-switchable scaffold such as azobenzene to be activated with light. In principle, photoswitches with desired photophysical properties like high isomerization quantum yields can be identified through virtual screening with reactive simulations. In practice, these simulations are rarely used for screening, since they require hundreds of trajectories and expensive quantum chemical methods to account for non-adiabatic excited state effects. Here we introduce a diabatic artificial neural network (DANN) based on diabatic states to accelerate such simulations for azobenzene derivatives. The network is six orders of magnitude faster than the quantum chemistry method used for training. DANN is transferable to azobenzene molecules outside the training set, predicting quantum yields for unseen species that are correlated with experiment. We use the model to virtually screen 3,100 hypothetical molecules, and identify novel species with extremely high predicted quantum yields. The model predictions are confirmed using high accuracy non-adiabatic dynamics. Our results pave the way for fast and accurate virtual screening of photoactive compounds.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here