Exciton-Polariton Condensates: A Fourier Neural Operator Approach

27 Sep 2023  ·  Surya T. Sathujoda, YuAn Wang, Kanishk Gandhi ·

Advancements in semiconductor fabrication over the past decade have catalyzed extensive research into all-optical devices driven by exciton-polariton condensates. Preliminary validations of such devices, including transistors, have shown encouraging results even under ambient conditions. A significant challenge still remains for large scale application however: the lack of a robust solver that can be used to simulate complex nonlinear systems which require an extended period of time to stabilize. Addressing this need, we propose the application of a machine-learning-based Fourier Neural Operator approach to find the solution to the Gross-Pitaevskii equations coupled with extra exciton rate equations. This work marks the first direct application of Neural Operators to an exciton-polariton condensate system. Our findings show that the proposed method can predict final-state solutions to a high degree of accuracy almost 1000 times faster than CUDA-based GPU solvers. Moreover, this paves the way for potential all-optical chip design workflows by integrating experimental data.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here