Exhaustive Symbolic Regression

21 Nov 2022  ·  Deaglan J. Bartlett, Harry Desmond, Pedro G. Ferreira ·

Symbolic Regression (SR) algorithms attempt to learn analytic expressions which fit data accurately and in a highly interpretable manner. Conventional SR suffers from two fundamental issues which we address here. First, these methods search the space stochastically (typically using genetic programming) and hence do not necessarily find the best function. Second, the criteria used to select the equation optimally balancing accuracy with simplicity have been variable and subjective. To address these issues we introduce Exhaustive Symbolic Regression (ESR), which systematically and efficiently considers all possible equations -- made with a given basis set of operators and up to a specified maximum complexity -- and is therefore guaranteed to find the true optimum (if parameters are perfectly optimised) and a complete function ranking subject to these constraints. We implement the minimum description length principle as a rigorous method for combining these preferences into a single objective. To illustrate the power of ESR we apply it to a catalogue of cosmic chronometers and the Pantheon+ sample of supernovae to learn the Hubble rate as a function of redshift, finding $\sim$40 functions (out of 5.2 million trial functions) that fit the data more economically than the Friedmann equation. These low-redshift data therefore do not uniquely prefer the expansion history of the standard model of cosmology. We make our code and full equation sets publicly available.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here