Expectation maximization transfer learning and its application for bionic hand prostheses

25 Nov 2017  ·  Benjamin Paaßen, Alexander Schulz, Janne Hahne, Barbara Hammer ·

Machine learning models in practical settings are typically confronted with changes to the distribution of the incoming data. Such changes can severely affect the model performance, leading for example to misclassifications of data. This is particularly apparent in the domain of bionic hand prostheses, where machine learning models promise faster and more intuitive user interfaces, but are hindered by their lack of robustness to everyday disturbances, such as electrode shifts. One way to address changes in the data distribution is transfer learning, that is, to transfer the disturbed data to a space where the original model is applicable again. In this contribution, we propose a novel expectation maximization algorithm to learn linear transformations that maximize the likelihood of disturbed data after the transformation. We also show that this approach generalizes to discriminative models, in particular learning vector quantization models. In our evaluation on data from the bionic prostheses domain we demonstrate that our approach can learn a transformation which improves classification accuracy significantly and outperforms all tested baselines, if few data or few classes are available in the target domain.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here