Explainable machine learning to enable high-throughput electrical conductivity optimization and discovery of doped conjugated polymers

The combination of high-throughput experimentation techniques and machine learning (ML) has recently ushered in a new era of accelerated material discovery, enabling the identification of materials with cutting-edge properties. However, the measurement of certain physical quantities remains challenging to automate. Specifically, meticulous process control, experimentation and laborious measurements are required to achieve optimal electrical conductivity in doped polymer materials. We propose a ML approach, which relies on readily measured absorbance spectra, to accelerate the workflow associated with measuring electrical conductivity. The classification model accurately classifies samples with a conductivity > 25 to 100 S/cm, achieving a maximum of 100 % accuracy rate. For the subset of highly conductive samples, we employed a regression model to predict their conductivities, yielding an impressive test R2 value of 0.984. We tested the models with samples of the two highest conductivities (498 and 506 S/cm) and showed that they were able to correctly classify and predict the two extrapolative conductivities at satisfactory levels of errors. The proposed ML-assisted workflow results in an improvement in the efficiency of the conductivity measurements by 89 % of the maximum achievable using our experimental techniques. Furthermore, our approach addressed the common challenge of the lack of explainability in ML models by exploiting bespoke mathematical properties of the descriptors and ML model, allowing us to gain corroborated insights into the spectral influences on conductivity. Through this study, we offer an accelerated pathway for optimizing the properties of doped polymer materials while showcasing the valuable insights that can be derived from purposeful utilization of ML in experimental science.

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here