Explaining Explainability: Towards Deeper Actionable Insights into Deep Learning through Second-order Explainability

14 Jun 2023  ·  E. Zhixuan Zeng, Hayden Gunraj, Sheldon Fernandez, Alexander Wong ·

Explainability plays a crucial role in providing a more comprehensive understanding of deep learning models' behaviour. This allows for thorough validation of the model's performance, ensuring that its decisions are based on relevant visual indicators and not biased toward irrelevant patterns existing in training data. However, existing methods provide only instance-level explainability, which requires manual analysis of each sample. Such manual review is time-consuming and prone to human biases. To address this issue, the concept of second-order explainable AI (SOXAI) was recently proposed to extend explainable AI (XAI) from the instance level to the dataset level. SOXAI automates the analysis of the connections between quantitative explanations and dataset biases by identifying prevalent concepts. In this work, we explore the use of this higher-level interpretation of a deep neural network's behaviour to allows us to "explain the explainability" for actionable insights. Specifically, we demonstrate for the first time, via example classification and segmentation cases, that eliminating irrelevant concepts from the training set based on actionable insights from SOXAI can enhance a model's performance.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here