Explaining Large Language Model-Based Neural Semantic Parsers (Student Abstract)
While large language models (LLMs) have demonstrated strong capability in structured prediction tasks such as semantic parsing, few amounts of research have explored the underlying mechanisms of their success. Our work studies different methods for explaining an LLM-based semantic parser and qualitatively discusses the explained model behaviors, hoping to inspire future research toward better understanding them.
PDF AbstractDatasets
Results from the Paper
Submit
results from this paper
to get state-of-the-art GitHub badges and help the
community compare results to other papers.
Methods
No methods listed for this paper. Add
relevant methods here